Mythbusting: The truth about Playstation 3 cooling en

By Flake on Sunday 9 November 2014 10:48 - Comments (25)
Category: Elektronica, Views: 60.245

By now it's common knowledge that the Sony Playstation 3, especially the phat model, has severe thermal issues. As I like to challenge myself, I decided that I would do whatever it takes to obtain a unit that cools properly, is extremely quiet in use and should last for many years to come. So after spending a lot of money and bricking two units in the process, I've finally cracked it and completed my challenge. A lot has been written about the Playstation 3's cooling system on the internet and in a way it did help me to crack it eventually, but I could not find one article that covered the truth, the whole truth and nothing but the truth. Most of it is incomplete and often it's incorrect, plain and simple. That is why I am also writing this blog to be an addition to the information that is already available to help you make the right choices. A jailbreak was part of the process and yes, I am pirating games, because I've lost all respect for Sony or the developers that have released exclusive games for this machine. But I will not give you a guide on how to do that, nor will I write one in the future. But it was needed to draw my conclusions.

I used to be phat
I bought a Playstation 3 in 2007, expecting the same degree of entertainment as the Playstation 2 gave me, as well as a good DVD/Blu-ray/media center solution. But after a very disappointing Final Fantasy XIII, Killzone 2 and the introduction of Cinavia, I pretty much abandoned it for years, resorting to my PC instead. Until I picked up Red Dead Redemption last year at our annual Queensday fleamarket. Great game, I loved it, but my Playstation 3 wouldn't stop sounding like a jetfighter, because the internal fan was spinning at maximum speed, heavily disturbing my gaming experience. This is when the challenge began. Obviously, the first thing I attempted was to replace the thermal compound. That didn't help much. It delayed the high speed fan from kicking in for a few minutes, so the end result was still the same.

The second attempt was to replace the internal fan. There are two different fans used in production. The first is a 19-blade fan which can be found in early models, assumably made and produced in Japan. The second is a 15-blade fan which can be found in later models, assumably made in China. My unit had a 15-blade fan originally and since the internet stated that the 19-blade fan is much better, I found one on eBay and gave it a go. Was the internet right? Well, they were right about the fan's cooling performance. It is much better indeed. This is the part where I lost respect for Sony, so this is when the jailbreaking began. I succeeded and I ended up using it a lot from that point on. But the thermal performance got worse again and after heavily enjoying GTA 5 for months, the 19-blade fan kicked into jetfighter mode as well.

As I thought that increasing the airflow seemed to work, I actually made a pretty sweet mod with a Nyko Intercooler for my fourth attempt. Because the phat PS3 is obsolete, so is the Intercooler, but I picked one up for a good price at a popular Dutch online marketplace. On eBay, these things go for ridiculous prices. I spent a good amount of money in buying all new fans for this thing, because this baby has common axial fans, rather than the PS3's radial one. There's actually a design flaw in the Intercooler, because the side fan blows air outwards instead of inwards. This just proves that you shouldn't trust everyting people tell or sell to you, always think rationally. I didn't like the fact that I had to switch it on prior to use and I wanted it to start running whenever I powered the PS3 on, so I tapped off the 12V supply from the PS3's power supply, removed the Intercooler's AC adaptor and hid the connector nicely inside the Intercooler's enclosure. It took me 3 days to build, about ¤ 130,- in materials and it worked like a charm. But what was the end result? Not a god damn thing. Even though I significantly increased the airflow with this thing, the jetfighter mode still kicks in at around the same time to annoy me even further. All that time and money spent on the Intercooler has been a pure waste and it ended up in the trash for recycling.

The big mystery
Why was it so hard to cool this thing properly? It worked excellent and quietly at the time I bought it, but the cooling appeared to get gradually worse over time. A new fan worked for a little while, and adding more fans later on did nothing. Thanks to the jailbreak, I am able to read out the CPU (Cell processor) and GPU (RSX processor) internal temperature sensor and they indicate that it is indeed running way too hot. I even managed to get my hands on a professional infrared thermal camera to see if I could do some temperature readings, but the only thing it could tell me was that the heatsink was around 55 degrees Celcius. This brings me to internet myth number one: The internal temperature sensor is failing. This myth is busted from the start. These sensors are usually diode or transistor based and they don't fail easily. When they do, you'd expect them to be stuck at some ridiculous value, but you could clearly see them starting at around room temperature and increasing gradually. The heatsink or the air moved out of the Playstation doesn't appear to be that hot either. There's only one myth that could explain this: The problem is under the CPU and GPU's heatspreader. If the heat transfer from the processor core to the heatspreader would be faulty, that would explain everything. It would explain why thermal performance got worse over time, why adding extra airflow doesn't work and why the temperature readings are so high. Because they are.

Overly-attached heatspreader
This is where I start to leave my comfort zone and do things I've never attempted before. I've never attempted to take this heatspreader off, with good reason. I never had to. And these things are not designed to be removable. Like most first attempts, it ended in failure. Twice.

The picture above is not mine, I am just showing it as a reference. The first thing you should know is that the CPU and the GPU are not the same underneath the metal. The GPU has passives on the side and four memorychips on each corner. The side facing the CPU is the only side that is free of passive parts. The CPU is glued together and judging by the shape of the glue, this was clearly done with machines. What's also interesting is that there is definetly a different type of glue used between the CPU and the GPU. If you know how to do it, the GPU's heatsink is fairly easy to pop off, but not the same thing can be said about the CPU. That is because the space between the CPU's base and the heatspreader, where the glue resides, is extremely narrow. You will need something very thin to get in there. I've seen this guy on Youtube that slices right through with a nailvile. I couldn't do it. The thinnest tool I could get my hands on was a joint knife. The blade is way too big and even then, it was still too thick. Being frustrated from roughly two hours of trying to open this thing, I made it thinner using the only somewhat suitable tool I could get my hands on, which was a Dremel. It worked, but it also made it extremely sharp. I was finally able to cut through the glue, but I got so enthousiastic of success that I whacked the blade right into the CPU core. It broke. True story. I had pictures of it on my phone, but my touchscreen died during warranty, so I had to ship it for repair and they swiped it.

So long, phatboy
After that happened, I pretty much got a replacement thrown into my face from someone who wanted to get rid of it. It was a slim and this one has clearly been moved a lot judging by the scratches on the exterior, but it worked fine and it was a model that could be jailbroken. The cooler was clearly too noisy for my taste. It was far from running on the highest speed, but it wasn't exactly close to the lowest setting either. Obviously, I wanted to to see if I could get that heatspreader off, again. Because taking the heatspreader off was obviously the most risky part, I focused on that and I went to the hardware store to see if I could get anything better suited than a joint knife. But it was still the most suitable tool in the store. I couldn't find anything that was thinner. I used my joint knife again, There was an elco I kept bumping into with my knife, and eventually I'm pretty sure I lifted it's enclosure. That's fixable, but it is still damage I didn't want. All because that fucking blade was too big. But I did manage to get that heatspreader off again without slamming it into the core this time. But the sharp and by now rusty blade did expose some copper beneath the heatspreader's surface. Exposing copper doesn't necessarily mean you broke it, unless you've shorted it. Those copper traces beneath there are very precise, and it looks like I did shorted it, because this one died too. Exactly the same result. Then I remembered this also happened on my first try with the broken core, but I didn't think it was serious. Apparantly it is. This might actually be fixable if you sand the copper down using a fiberglass pen, but taking the whacked elco into account as well, that Playstation was already damaged so badly that I didn't want to try it anymore.

Finding another one. And finding a tool.
I obviously didn't get a new Playstation thrown into my lap again, so I had to search for one. I looked up online ads and I called sellers before making a bid to see if it was a suitable model. Rejected a lot of models because they weren't. I'm sure that left a number of sellers pretty confused. But I did manage to find one closeby and this one has clearly been treated with respect. The last owner tried to keep it dust free and there's no external damage anywhere. So I bought it. Now I needed a tool, because I was convinced that the joint knife I used is the biggest reason for my earlier failures. When you're searching online for a tool, there's one site that definetly wants to be found for this job. It is the IHSBuster.

When you enter the site, you see a well designed frontpage, but that's about it. There are two poorly shot videos, an order page, a contact form and a lot of empty pages. No address, no phone number, not even a company name. There's also nothing written about it online. To me, that instantly makes alarmbells ring, quite loudly too, and I'm sure I'm not the only one who thinks that way. But they do offer Paypal and Paypal offers you buyer protection. They have pictures, they have two videos so they're clearly trying to say that they deliver what is displayed and if they don't deliver, Paypal should give you your money back. So atleast that gave some kind of insurance. I thought I'd tried it out, because why not. It's not like I've found anything better and the tool seems well suited for the job. At ¤ 50,- including shipping, it's more than I would have wanted to pay for it, but I've paid more in the past for specific specialist tools. Considering that someone actually went through the effort to get a tool manufactured for this job, I'd say it's worth it. But they could have been a lot smarter in their efforts to sell it.

I placed the order on a Sunday and thanks to the Paypal transaction, the identity of the selling party is finally revealed. It is Compufit, some British local consumer electronics repair company. I didn't hear anything after that, so I sent a mail on Wednesday to ask about my order. I got a response on Saturday telling me it was shipped the day before, and I got it in the mail on Tuesday. I do a lot of buying online and I would consider this transaction to be below standards, but frankly, I'm more relieved that I actually got the thing. First impressions are that every promise made on their website is fulfilled. The handle is probably a standard part with a logo glued onto it, but I am assuming the blade is not. I cannot find any evidence to suggest that this is manufactured by hand, which is a good thing, because hand manufacturing will always lead to quality issues on some units. I'm guessing the material is steel. It is very thin, it is slightly flexible, nicely polished and the blade at the end is blunt, but slightly sharp at the same time. You can jab it in your skin and it won't hurt you, but it does latch into it instead of smoothly sliding over. With enough force, it will slice your skin off. This thing looks promising, so time to try it out!

Here's the result. A nice, clean cut. You can tell that my point of entry is at the bottom left corner of the heatspreader. To make a point of entry, as I've already figured out with the joint knife, the trick is not to use blunt force, but to push it slightly and wiggle the handle around from left to right until you cut through. Once you do, the IHSBuster just slices through the glue like butter. So was it a good buy? By now, I can tell you that the IHSBuster is hands down the most perfect tool you could ever think of if you're gonna do this job. They've got every aspect right: The thickness of the blade, the sharpness of the edge, the flexibility of the blade and that angle in the middle guarantees that if you're going to scratch anything, it will be the heatspreader instead of the chip's base. If you're having trouble finding the right tool for this job, look no further. If the price is an obstruction, there's no reason why you couldn't sell it when the job is over to limit the damage for your wallet. But I'm going to keep it. Who knows when this thing might come in useful. In terms of product design, they've done a very good job, with the exception of the handle, because it is plastic. I'll tell you why in a minute.

Now that I have finally got this thing off, I cleaned up all glue and old compound, replaced it with Arctic Silver, put it back together and fired it up with GTA 5. And after half an hour of driving around, the fan was still running at a very low speed and the temperature sensors revealed that the CPU was at a stable 65'C and the GPU at 70'C. When the tv is muted, you could hear the PS3 if you'd focus on it, but during a game or a movie, it is impossible to hear. Challenge completed: This thing is finally quiet.

After a lot of experimentation and failure, I can now finally conclude why the Playstation 3 has such thermal issues: Sony has used a thermal compound under the CPU and GPU heatspreader that suffers from terrible decay over time. This is not a design flaw, but a production flaw, and a nasty one that will not reveal itself until years have passed. I could not find a single design flaw that requires you to modify the Playstation 3 in any way. With phat models, it is true that the 19-blade fan performs better over the 15-blade, but remembering it's itinitial performance, I am convinced that the 15-blade fan is suited enough to cool a phat quietly. The reason why phat models have more issues is because it consumes more power, which means more heat, and the reason for that is because the CPU/GPU are etched on a lower resolution over the slim ones (90nm - 45nm).

When you look at either the phat or the slim's design, the fan control is suitable for low noise performance, the heatsink is properly designed and at low speeds, the air in- and outtake are more than big enough. Every other solution is busted, including the exterior cooling accessories, the PS3 ezChill or these ridiculous (and often hideous) mods that I've seen people make. If the heat from the processor cores isn't properly transferred to the spreader, none if it will work. There is nothing wrong with the Playstation 3's temperature sensors: These sensors are very simple and do not break easily, and if your PS3 is shutting down from overheating, that is because it is, even if it doesn't feel hot at all. There's no point in blaming the sensors. You should be thankful that they prevent irreversible damage.

This is the end result. It looks the same on the exterior, with the exception of the warranty seal ofcourse, but the big difference is that this baby is impossible to hear when you're playing a game without any hard- or software modification whatsoever. Do you want to know how to do it like a professional? Here's how.

First off, here's your material list. Skip nothing, because you'll need it all. You will need:
  • The right screwdrivers, including the security torx
  • An ESD service kit
  • An IHSBuster
  • A hairdryer
  • A syringe of Arctic Silver 5
  • Rubbing alcohol or ArctiClean
  • Cotton cloth or paper towel
Use protection, just like your grandma said
If you want to do the job properly, you do not want to damage your PS3 motherboard while doing so. Which is why you need protection from static discharges you are transferring to your PS3 during repair, commonly known as Electro Static Discharge (ESD). ESD will damage the silicium of the components on your PS3 and you will not be able to tell that this is happening. Your PS3 will work fine once you're done, but it will decrease its life expectancy significantly, so don't expect it to last more than 3 to 5 years if you haven´t used protection. This is the most important reason why I don´t trust any of these self proclaimed repair experts with a job like this, because ESD damage is very real and a true professional would know that. None of these repair howto's I've seen ever mentioned it. I´ve written a blog (in Dutch) about it before and iFixit has a good blog about it as well. If you've ever opened up your PS3 before without using an ESD kit, you're already too late because the damage is irreversible. Find a new one and make sure the warranty seal is intact, because that is your only guarantee that no-one has tampered with it. I guarantee you that Sony's assembly plant has a proper static free environment, like all other professionals in this industry. Once it's enclosed, it's immune, but once it's opened, it's vulnerable. So ground yourself before opening the first screw, do not use any plastic or synthetic material whatsoever and don't remove the wristband until it's completely back together again. Do not use tape, do not wear latex gloves, do not use plastic tools and do not use synthetic cloths like microfiber. You get the idea.

Start with the GPU
Open the PS3 up and extract the motherboard. Consult iFixit for a guide depending on your model. Once you have it out, it is time to figure out how to get the heatsinks off. I recommend starting with the GPU, because the point of entry you should use is the side that is right next to the CPU. If the CPU's heat spreader is still on, you will not damage it. As I wrote earlier, a different type of glue is used between the GPU and CPU. In order to weaken the bond, you should heat it up using a hairdryer. Then you need to wiggle a screwdriver between the heatspreader and the GPU to make it come off. But beware, this should be done with lots of patience. The material used on the base of the GPU is somewhat soft and wiggling around on it with a screwdriver will leave dents in the GPU's base. You do not want that: there are copper traces underneath that could break from these dents. To solve that, use something to cushion the blow from the screwdriver that is not plastic or synthetic. I saw a video where someone used a cardboard strip. I used a small wooden toothpick. Another good suggestion which I thought of afterwards is the wooden stick from an ice cream popsickle. So push the protective material and the screwdriver in that corner, heat the GPU up with a hairdryer and gently wiggle the screwdriver in a rotating direction. To give you an idea, I had to heat up the GPU about five times because it cooled off before I managed to break the bond. That's how patient you need to be and how little force you need to use. Using these instructions, you should have a pretty safe method to get the GPU's heatspreader off.

Moving on to the CPU
The CPU's heatspreader can be removed quite easily, but only with the right tool. Unless you have a workshop to make a decent tool yourself, I highly recommend using the IHSBuster. I could not find any standard tool in retail that's good for this job. Take note of how wide the glue traces are from the pictures. Do not push your tool any deeper towards the center: If you touch the core with a metal tool, you're bound to brick it.

The glue used is a very strong and flexible material. Unlike the GPU's glue, heating it up does not seem to affect it. To cut it, you will need to make a point of entry and slice it open. Once you've made a point of entry, you will cut through it like butter, but the point of entry is the most difficult part. I recommend starting in a corner, because the corners are easily accessible. The trick is not to use blunt force, but to push it slightly and to wiggle the back of your tool from left to right. Once again, use patience. When wiggling your tool from left to right, you should notice that it gradually gets in deeper. Once you can tell that, be cautious not to get overly excited and push the tool in too deep. Stay focused. Once you've made your point of entry, slice off the glue on all sides and it should come off.

Cleaning up afterwards
The old thermal compound can be cleaned off easily with rubbing alcohol or ArctiClean. Use a paper towel or cotton cloth, nothing synthetic. The glue remains will also have to be removed. If you were to push a heatspreader back in its place, the distance between the CPU/GPU and the heatspreader would be greater than before because of the glue remains. That's why it has to go. You cannot brush it off, you will need to scrape it. The IHSBuster is also a great tool for this if you hold it upside down, with the tip facing down. This is also a task that you should do with lots of patience. Particulary the glue on the GPU will take a good 30 minutes of scraping on the memorychips and the heatspreader. The glue on the CPU is much easier to scrape off because of its flexible texture.

New thermal compound
As listed in my bill of materials, I highly recommend the use of Arctic Silver for two reasons. One, Arctic Silver really does perform better than a standard sillicon compound. I've seen several tests that have shown that the use of Arctic Silver makes a couple of degrees of difference. When your goal is to make the Playstation 3 as quiet as you possibly can, you want those extra couple of degrees that Arctic Silver gives you. Especially considering that you need to apply it on both sides on the heatspreader. Those couple of degrees add up on each side. I'm not saying that sillicone compound won't work, but I am saying that Arctic Silver will work better. The second reason is the decay of the compound. Little reliable information is known yet about Arctic Silver's decay, but a lot is known about the decay of sillicone compounds. After a few years of intensive use, it's worn out and needs to be replaced again. Because silver doesn't decay at all, I'm pretty confident that Arctic Silver will perform better over time.

Most guides state that you should use thermal adhesive to glue the heatspreaders back to the board. I tried that on my first attempts that ended up in failure anyway, but after reconsidering, I'd recommend that you do not use adhesive. The Playstation 3's motherboard EMI shield has two springs on the back of the CPU and GPU to push it to the heatsink. These springs will do an excellent job of securing the heatspreaders without using glue. Gluing it back together imposes the risk of extra distance between the CPU/GPU and the heatspreader, exponentially decreasing thermal performance. Plus there is always a risk that you will have to change the compound again after a couple of years. If you do not glue the heatspreader back on, the process of replacing the compound again will be much less painful. I did not glue it back and I have no regrets doing so. So apply Arctic Silver on the CPU/GPU core, place the heatspreaders back, apply Arctic Silver to the heatspreader surfaces and place the top part of the EMI shield without dislocating the heatspreaders. Flip the board, place the rear shield and secure the springs on the back. Re-assemble the Playstation 3 and remove any dust you can find inside and you should be good to go!

Why you should do this yourself
Outsourcing is always a good option if you need to invest a lot of money or do not have the experience to get the job done. But in all honesty, I strongly advice to do this job yourself. There are two reasons why outsourcing this job is a bad idea. The biggest reason is that the people offering these services are pretty much always self proclaimed experts without any real training. The biggest quality concern when performing this repair is the ESD damage. You're doing this repair because you want this machine to last, but ESD damage will decrease the life expectancy significantly. I did not find any guide or repair provider that promises to use protection and I highly doubt they even heard of it. I have good faith that my Playstation 3 will work for many many years to come and I am pretty confident that the repaired units from others will not achieve the same. The second reason is the time it takes to get this job done right. This repair should be done with lots and lots of patience and even for an experienced person such as me, this is easily two to three hours of work. I'm sure you can make a good estimation of what a three hour repair job should cost for a professional. Probably more than the ¤100,- worth of material that you will need to get this job done. If you're good with tools and you follow my instructions, this job is very doable, but it takes time.

Don't bother contacting me if I can do the repair for you: I don't need the money and I don't have the time.

Final words: Why Sony, Nintendo and Microsoft should go fuck themselves
There were times when a newly released console was much faster than a pc and it took about four years before the pc was up to speed, but those days are over. The new Xbox One and PS4 both use the PC architecture but compared to a modern PC, their performance is actually worse. The only thing you get is another closed platform with expensive games and accessories and an online subscription fee to boot. On top of that, I am not convinced that these are quality products. The last generation consoles from Sony and Microsoft have serious design (Xbox360) and production (PS3) flaws that caused hardware failure and I am not convinced that the new generation is any better. A friend of mine already bought a PS4 which lasted for about a month. Now it's been sent to repair two months ago. As a consumer, you should know when you're being fucked in the ass and that's exactly what these companies do. There's no point of supporting a closed platform anymore. Too bad about the exclusive games, but I'm putting my money on the Steam Machine.

About the author
The author is a Dutch engineer with an internationally recognised bachelor's degree in electrical and electronic engineering that likes to play games and fix broken things. I am completely independent and not affiliated with Sony, Microsoft, Compufit/IHSBuster or the PS3 hacking community in any way.

UPDATE: May 2017
It's been 2,5 years since I wrote this blog, and it has over 30k views and has been referred to quite a number of times. Some feedback has been skeptical, and that's okay. I'm a skeptical person myself. But most of the feedback appears to be that people and communities believe or confirm (most of) my conclusions. Thank you internet :).

There is one update that I need to make about the IHSBuster, because it appears to be a commercial failure and it is not fore sale anymore. I already mentioned that it was expensive and they didn't do a very good job selling it, so that is not a surprise. But the internet did provide the answer that I didn't have at that time, so it's useful to mention that here. The tool that you're looking for to open up a heatspreader is an oil spatula. And it's a lot cheaper than an IHSBuster.

Also a little add-on for questions that I've seen after reading this blog: This blog covers overheating *only*. You can recognize overheating quite easily, because the PS3 will still boot and you can launch your games, but the fans will keep on going louder and louder until it shuts down. It will also give you an XMB warning that the PS3 is overheating. Consoles that will immediately run the fans at high speed and shutdown instantly are *probably* also affected by this issue. I am not completely sure, but high fan speed would definitely indicate a thermal issue so it could be that the console's compound has turned totally worthless and it overheats instantly during booting. The decay of the compound is a slow process so it would definitely have experienced thermal shutdowns as described above before, but if you're unfamiliar with the console's history and high fan speeds is all it does right now, it's definitely worth a shot. If you have YLOD/RLOD and your console refuses to boot without high fan speeds, your issue is probably something else. Reflowing or reballing will only work for broken solder connections under the CPU/GPU, which is a rarer failure mode for the PS3 as far as I can determine. It is more common for the phat Xbox 360 for numerous reasons. But if you're going to reflow a PS3, you'd probably want to delid the CPU/GPU and replace the compound afterwards anyway, because you'll need to heat the CPU/GPU up to way over 200 degrees Celsius to turn the tin liquid again. That will definitely affect the compound under the heatspreader, if not completely destroy it. No electronics thermal compound is designed for those temperatures.

I am also aware of a video from Linus' tech vlogs where he points out that delidding a CPU is not worth the risk. His conclusion and mine are not contradicting, you have to keep in mind that he is referring to an Intel desktop CPU. I have concluded that Sony uses a bad compound, but this is not necessarily true for Intel or AMD. I've never seen an Intel desktop CPU with thermal issues because of this, so it is safe to assume that Intel uses something else in production. Unless you're into hardcore overclocking, Linus is probably right. But the PS3 is a different story. Also, keep in mind that Linus is just another typical IT guy. I am not going to argue with IT guys over software, but when it comes to hardware, IT guys tend to overestimate their knowledge. Linus is a good example of that, some videos make it pretty obvious that he hasn't been trained in electronics or physics and he is bluffing himself out. Keep that in mind. But his show is definitely enjoyable.

The PS3 still works fine by the way. I've still used occasionally for some PSX retro. I still think consoles these days are shit, including the Switch. That's obviously not a fact but an opinion. And I think it's a shame that the Steam Machine has come to a halt. The concept is still very cool and I hope they will pick it up at some point.

Howto: Ventilator in de voeding vervangen

Door Flake op dinsdag 21 januari 2014 19:51 - Reacties (22)
Categorie: Elektronica, Views: 9.976

Een kleine inleiding: Mijn Delletje uit 2009 heeft nog nooit storing gegeven, voldoet nog steeds en deed z'n werk altijd fluisterstil. Daar kwam laatst verandering in toen ik een Latex-document aan het schrijven was en tijdens het compileren kon je de koeling ineens flink horen blazen. Da's natuurlijk niet goed. Nou kan ik meteen verklappen waardoor dat komt: stof. Mijn PC en randapparatuur zitten uit het zicht weggewerkt in een bureaukast die ik slechts incidenteel schoon maak, maar de laatste keer was ruim 3 jaar geleden. Misschien is incidenteel niet eens het juiste woord.

Deze foto had ik destijds over WhatsApp naar mijn vriendin gestuurd. Leuk dat deze Dell een aparte intake heeft in de wand boven de videokaart, dat zie je niet vaak, maar als die vol zit met stof zal dat niet veel helpen. Dit gold voor de hele pc: alle kieren zaten verstopt met stof en aan de binnenkant was het net zo erg. Compressor en stofzuiger erbij gehaald, alle stof verwijderd en alle heatsinks schoon gespoten. Toen kwam er een ander euvel aan het licht: 1 fan is uit balans geraakt, hij vibreert en maakt geluid. Helaas bleek dit de fan van de voeding te zijn. Of dit door het schoonspuiten komt kan ik niet met zekerheid zeggen. Veel mensen zullen zo'n klacht laten voor wat het is, want hij draait nog wel en er komt lucht uit, maar het geluid hiervan komt bij mij over als een baby zeehond die wordt doodgeknuppeld. Zo ga je niet met elektronica om: dit moet gerepareerd worden.

Een normale opvatting van de gemiddelde IT'er is dat je de fan van een voeding niet kunt vervangen: dat wordt een nieuwe voeding. Mooi niet dus hè, die voeding werkt nog perfect en die fan kun je prima vervangen, alleen is dat niet zo simpel als een stekkertje insteken. Hiervoor moet je solderen. Als je, net zoals ik, enigszins ervaren bent met solderen, dan draai je je hand daar niet voor om, dus in dat opzicht is deze blogpost niet het spannendste wat je kunt bedenken. Ik heb toch besloten om er verslag van te leggen voor de tweaker die ook een kapotte fan in zijn voeding heeft, maar geen idee heeft hoe je dit moet oplossen. Hopelijk heb je er dus iets aan.

De benodigdheden om dit uit te voeren:
  • Een nieuwe fan
  • Schroevendraaiers
  • Strip- en kniptang
  • Een scherp (hobby)mesje
  • Soldeerbout met tin
  • Krimpkous (tip: koop een kitje met verschillende maten)
  • ESD-kitje
Wat het ESD-kitje betreft, ik heb in mijn vorige blogspot genoeg gezegd over antistatisch werken, en dat geldt ook voor deze voeding! Computervoedingen zijn flyback converters en daar zitten mosfets in. Laten mosfets nou net zeer gevoelig zijn voor statische elektriciteit. Omdat deze ook nog eens bijzonder heet worden gaat de degradatie met deze dingen net iets harder. Mocht je zo'n kit niet hebben en niet willen kopen, doe dan je best om geen componenten aan te raken, ook geen heatsinks. Bij een voeding is dat nog wel te doen.

Je zult ook iets nodig hebben om de krimpkous te laten krimpen, dat doe je met hitte. Aanstekers ben ik geen fan van, omdat je de kous vaak midden in de vlam moet houden om een beetje warmte over te kunnen dragen waarbij de temperatuur vaak te hoog wordt en het spul gaat schroeien. Ik gebruik een klein gasbrandertje: die kun je makkelijk vanuit iedere hoek richten en als je afstand houdt en veel beweegt voorkom je dat de temperatuur te hoog wordt. Een verfstripper is ook zeer geschikt, mits je 'm niet te heet zet.

De voeding in kwestie (van Lite-On) met een nieuwe fan. Ik wou 'm stil hebben, net zo stil als voorheen. Dit was de enige stille fan die de retail in mijn directe omgeving kon bieden, van Fractal Design. Nu gaan we de voeding openmaken.

Zo ziet de voeding eruit zodra hij is geopend. Zoals je ziet zit de transformator hier aan de bovenkap. Ik heb eerst de behuizing geopend zodat ik deze transformator kan opvangen tijdens demontage, zodat hij niet op de printplaat knalt. Na het losschroeven leg je hem gewoon aan de kant. De kap is dan verwijderd en dan heb je genoeg ruimte om te werken. Volgende stap is om de ventilator los te schroeven.

De gewraakte ventilator. Quality and performance staat erop, ik merk het ja :/.De draadjes kunnen eraf worden geknipt, maar hou genoeg speling over om aan te kunnen solderen. Inkorten kan later altijd nog. Deze fabrikant had de gehele kabel van krimpkous voorzien. Met een hobbymesje kun je dit wegsnijden door in het begin van de kabel je mes tussen de twee aders te zetten en omlaag te strijken. Probeer wel tussen de twee aders te blijven met het mes, anders snij je in de isolatie van de kabel waarmee je kortsluiting kunt veroorzaken. Mocht dit gebeuren, dan kun je nog een nieuw stukje krimpkous om die isolatie schuiven om dit te repareren.

Na het verwijderen van de fan kun je de nieuwe plaatsen en de kabels op maat knippen. Laat een stukje over aan het uiteinde om te kunnen strippen. Bij het strippen van de kabel uit de voeding, let er op dat je geen kracht uitoefent op de printplaat! De gele kleur verraadt dat dit een pertinax printplaat is. Lekker goedkoop, prima hitte eigenschappen, maar mechanisch bijzonder zwak. Ze kunnen niet tegen trillingen (vandaar die gigantische hoeveelheid lijm die je overal ziet) en als je tijdens het strippen aan de kabel gaat trekken, dan heb je grote kans dat je de koperverbindingen aan de onderzijde kapot trekt. Hou de kabel dus vast met een tang als je tijdens het strippen aan de kabel gaat trekken. Na het strippen kun je het uiteinde twisten en vertinnen. Dan komt het er als volgt uit te zien.

Draadjes zijn ingekort, gestript, vertind, met krimpkous op z'n plek. De gele draad is voor feedback om de rotatie uit te lezen. Aansluitingen op je moederbord ondersteunen dit altijd wel, maar deze voeding doet daar niks mee. Die kun je rustig eraan laten zitten zonder ergens aan te sluiten, dit heeft geen gevolgen. De krimpkous zit per ader en zoals je op de foto ziet zit er nog een extra dikke krimpkous aan de onderzijde. Dit is mijn manier van meeraarderige kabels repareren: Zodra alles vast zit schuif ik er een extra kous omheen. Dan weet je zeker dat die isolatie nooit meer los schiet en dat alles op z'n plek blijft.

De soldeerverbindingen zijn gemaakt, maar ik heb een fout gemaakt. Bij de rode kabel liet ik de krimpkous te dicht bij de verbinding komen, waardoor hij is gekrompen door de hitte van de soldeerbout. Die krijg ik niet meer netjes eraf geschoven over die verbinding waar ik 'm wel hebben. Ik zal vast niet de enige zijn waarbij dit kan gebeuren. Geen probleem: De zwarte kous is in orde, dus die kan gekrompen worden op de verbinding. De rode verbinding solderen we los, de krimpkous vervangen en opnieuw solderen.

Zo hoort dat eruit te zien. Nu kan die grote kous over het hele geheel geschoven worden.

Klaar! Nu kan het kastje dicht :)

Voilà, de voeding zit weer in elkaar en aan de blades kun je zien dat de Fractal Design fan nu is ingebouwd. Volgende stap: testen! Als je een computervoeding op stroom zet gebeurt er niks. Om hem aan te zetten dien je de groene draad uit je ATX-plug kort te sluiten met zwart: dit is wat de computer doet als je de aan-knop indrukt. De voeding vliegt dan aan, alle spanningslijnen worden actief en de fan gaat draaien.

... of toch niet? Want tot mijn verrassing vliegt de fan dus niet aan :(. Hij heeft een klein schokje, maar draaien doet hij niet. Dat schokje geeft wel aan dat er iets gebeurt, als ik de fan een zetje geef met een stokje door het vingerrooster doet hij het wél. Zonder te meten weet ik dan al meteen wat het probleem is: De spanning is te laag. Er mag dan wel een 12V fan in zitten, maar deze voeding blijft stil door de fan op een lagere spanning aan te sturen, en die is te laag voor deze Fractal Design. Dat had ik niet verwacht. Nu ik dat weet gaan we geen nieuwe IT-fan gebruiken, maar een industriële van de lokale elektronicaboer.

Poging nummer twee, dit keer met een Sunon. Met deze fans ben ik al jaren bekend: kwalitatief uitstekend spul, maar ze hebben één groot probleem: ze produceren ontzettend veel herrie. Om die reden had ik deze fan in eerste instantie geweigerd. Nu ik weet dat deze voeding de fan op een lagere spanning aanstuurt kan ik dat rustig doen. Voor de zekerheid had ik de oude fan meegenomen naar de winkel en de startspanningen vergeleken met hun voeding. Deze fan heeft zelfs een lágere startspanning dan de originele, dus dit kan niet mis gaan. Bovenstaande stappen heb ik nu herhaald, met als uitzondering dat ik mijn oude soldeerverbindingen intact laat: ik verwijder alleen de krimpkous om mijn vorige reparatie ongedaan te maken. Opnieuw geïsoleerd met nieuwe kous, testen en voilà, we have lift-off!. Vergeleken met de vorige fan verplaatst deze aanzienlijk meer lucht en omdat hij op een lage spanning wordt aangestuurd blijft hij fluisterstil. Na een stresstestje in Windows gaat de fan inderdaad harder draaien, maar horen doe ik 'm niet.

Dus ik zeg: Job done! Zelfs al heb ik in eerste instantie een verkeerde fan gekocht heeft dit klusje me toch een paar tientjes bespaard op een nieuwe voeding, plus klussen is natuurlijk altijd leuk. Die Fractal Design gaat in mijn stash van onderdelen: Wie weet komt hij ooit nog een keer van pas. Meteen een les geleerd: bij het vervangen van de fan voortaan de karakteristiek van die fan controleren als hij uit een voeding komt. Die fout maak ik niet nog een keer.

Nou is dit klusje niet echt beduidend spannend, maar ik ben bezig met een ander projectje, ook koeling gerelateerd, wat ongetwijfeld een stuk leuker zal zijn dan deze. Te zijner tijd komt daar ook een post over. Stay tuned ;)