NES aftermarket 72-pin connector repair and review en

By Flake on Sunday 8 January 2017 19:47 - Comments (8)
Category: Elektronica, Views: 3.981

A friend of mine actually likes to play Mario 3 while taking a shit, and I can't blame him. I got invited over for a party he threw last new year's eve, and check out his bathroom. This bathroom is really warm, it smells really nice thanks to the incense, an old fashioned ghetto blaster, and obviously the NES. These are crappy phone pictures that I took that evening.

As Mario 3 was running, I figured I'd get the two flutes in world 1 and a couple of 1 ups, then warp to world 8 and leave it there. When I returned later that evening to take another piss, I saw the game over screen. Someone has actually been playing that evening. Funny. And someone during the party actually asked me how I did the warp trick. I wanted to show him, but it got a little crowded in that tiny bathroom and someone bumped into the NES. That caused the NES to fail and after a couple of attempts we couldn't get that game to work anymore.

This was obviously contact failure. The owner said that he already tried to replace the 72-pin connector, but that didn't help much. I enjoyed myself a lot during the party he hosted, so I offered him a free repair. And let's have a look at the replacement connector.

Contact failure is really kicking in nowadays on these vintage cartridge consoles and there's a lot of bad advice online on how to fix this. Take the Angry Video Game Nerd for example, who has a lot followers on Youtube. He made a video about this phenomenon, featuring his glitch gremlin. His repair advice starts at 03:28.

A generic cleaning solution is not what you should use to clean electrical contacts. Depending on what you use, this might appear to work, but probably only temporarily. I am pretty sure that he is doing this procedure a lot, whereas a good repair should make it disappear for a very long time. I am also pretty sure that some of the glitches I am seeing in this video are caused by crosstalk in the PCB signals, and that's probably due to moisture. He probably tried that cue tip repair just before recording it. Usually, games just won't load at all. This NES gives a purple screen and a blinking power led.

My weapons of choice in this repair are three cans of contact spray from manufacturer Kontakt Chemie: Kontakt 60, WL, and 61. I learned about these products during my youth with audio gear. A lot of vintage audio gear also suffers from contact failure, in the switches, potentiometers or faders for example. In that community, it's common knowledge that these products will fix bad contacts, and I am now sharing that knowledge with the retro gaming community, because this stuff really does work great.

Kontakt 60 is the contact spray, WL is a washing liquid and 61 is coating and lubricant. The manufacturer recommends these sprays to be used in that specific order. It's easily available in Europe through Conrad, but this might be hard to obtain anywhere else. I know that the owner CRC Industries sells their own contact spray and lubricant in the states, and that will probably work equally well. A lot better than generic cleaning solutions.

I have done this repair numerous times, for instance on an N64, a dj controller and even my bicycle led headlight that all suffered from contact failure, but I never repaired an NES before. With an N64 or SNES, you have easy access to the game connector, so you can perform this repair without opening up the system, which is nice. On the NES however, the cartridge connector is situated pretty deep, and the push down tray is also very squeaky and could use some lubrication. So it's needed to completely disassemble it. Fortunately, that's really easy. I knew that the cartridge connector had been replaced, so I kept in mind that I might have to fix some bad soldering. I was very surprised to learn that the cartridge connector had an edge mount connection to the motherboard as well, rather than soldering.

I had to use serious force to unmate this connector from the motherboard. I could hear the contacts scratching and there's evidence visible that confirms contact scratching. You can feel the scratching with game cartridges too.

To fully repair connection issues, it is vital that you clean the entire signal path. In this case, that means the motherboard edge, both connectors on the replacement part and the cart edges in all game cartridges. Apply a generous amount of Kontakt 60 on the contact area and wash it off with Kontakt WL. I don't see any reason to use cue tips, there is nothing that could be damaged from contact spray in the games or the console. You should be careful with that stuff around motors, sensors and opto electronics like a dvd drive or a display, but the NES doesn't have any of that. After applying, you just let it dry or use an air compressor.

Kontakt 61 is coating and lubrication. With lubrication, you need to be aware that this makes the connector vulnerable to microscopic particles of dust. This means that contact lubricant should preferably not be used on exposed connectors, such as your game cartridges, a Game Boy or the Atari 2600. The dust cover on an SNES or N64 will work just fine and those are obviously a little better by design compared to an NES, but it will have to do. Because I know this replacement part is seriously scratching, it really needs lubrication. It's okay to do your motherboard edge too for the coating. But don't lubricate your games. Make sure your system is completely dry after all the contact spray. Spray as little as you possibly can, but make sure you cover the entire contact area. A good technique would be to obviously use the straw on the can, give 1 short spray at a time and slowly move from left to right for the entire length of the connector.

After lubrication, the contact scratching on the motherboard is gone and the force I have to apply to mate or unmate this connector is significantly reduced.

The squeaky sound when pushing down a game is caused by the springs on the sides. This is mechanical, so I would recommend lubricating these with the best mechanical lube there is: WD-40. The NES' dust cover was squeaky as well, also fixable with a little WD-40. The center slider on the front wasn't making any bad sounds, but I gave that a little spray as well.

After reassembly, the game would run, but it had terrible RF distortion. The cartridges are digital, so a bad connection over there would never cause RF interference. I immediately turned my attention to the RF cable assembly, and it took me a while before I figured out there's nothing wrong with it.

The culprit is this RF channel switch on the back. Wiggling it around a bit would fix it, but you can tell it has a terrible connection. No need to disassemble the NES for this, just spray the Kontakt 60 and WL in the switch itself and toggle it around a bit. And you've got yourself another bad contact fixed.

This is the last issue I have found with this NES. It doesn't squeak anymore, the contacts aren't scratching anymore, and most importantly, all games just run right off the bat. This NES and these games have been fully repaired and won't interfere for the next couple of decades probably.

I have learned quite a bit about this aftermarket 72-pin connector that I feel like sharing with the community. Is it any good? Well, I have managed to get it to work fine. It can definitely be used to revive an NES if the connector has failed. But the important thing is that whoever made this connector forgot to lubricate it. Remember that the NES is still 80's technology and the connector has its issues. Nintendo has fixed these in the toploader model, but that was never released in Europe. This connector simply isn't very good by design. This replacement fits excellent on the mechanical side, but the mating force is way too high and the contacts are scratching. Those are serious issues. Contact plating that has been scratched off is permanent damage, and all the plating will be gone eventually. Using tin solder to fix this could work for a while, but tin is a very soft material and not suitable for connectors that need to have a high mating cycle. After lubrication, the contact scratching is gone, the mating force is acceptable and the connection is good, if the game is inserted all the way in. That has always been a thing with the NES. So yes, this is a pretty good connector. But you really need to lubricate it. Also, keep in mind that if your NES connector has bad contacts, you should attempt to repair this first with the steps described above before replacing the connector. Maybe there's no need to replace it.

Also, this game (The Adventures of Rad Gravity) is terribly bad.

UPDATE: 10-1-17
Two days after the release of this blog, I realized something. I wrote in the blog that tin plating should not be used for connectors that need to have a high mating cycle. You can clearly see by the color that the motherboard's edge has tin plating. That could work, but wouldn't it make sense to use gold for the games?

Guess what, it does. The games are gold plated. Then what about this replacement connector? I still have one picture that I didn't publish, but it's very useful now.

This is clearly tin plating. Mating gold with tin causes contact fretting. This is a very big fail.

Contact fretting is described in the paper here and another good source is from TE Connectivity here. The original Nintendo connector does appear to have gold plating for the game cartridges, and tin for the motherboard. A very curious design choice and unfortunately some Chinese (probably) failed to notice that or didn't care.

Referring to the TE Connectivity publication, you will get tin oxide transfer from the connector to your games. This is obviously bad and I don't think you can get rid of any tin oxide transferred to get your gold contact area back. Anyone using this connector should stop using it immediately.

Mythbusting: The truth about Playstation 3 cooling en

By Flake on Sunday 9 November 2014 10:48 - Comments (25)
Category: Elektronica, Views: 28.682

By now it's common knowledge that the Sony Playstation 3, especially the phat model, has severe thermal issues. As I like to challenge myself, I decided that I would do whatever it takes to obtain a unit that cools properly, is extremely quiet in use and should last for many years to come. So after spending a lot of money and bricking two units in the process, I've finally cracked it and completed my challenge. A lot has been written about the Playstation 3's cooling system on the internet and in a way it did help me to crack it eventually, but I could not find one article that covered the truth, the whole truth and nothing but the truth. Most of it is incomplete and often it's incorrect, plain and simple. That is why I am also writing this blog to be an addition to the information that is already available to help you make the right choices. A jailbreak was part of the process and yes, I am pirating games, because I've lost all respect for Sony or the developers that have released exclusive games for this machine. But I will not give you a guide on how to do that, nor will I write one in the future. But it was needed to draw my conclusions.

I used to be phat
I bought a Playstation 3 in 2007, expecting the same degree of entertainment as the Playstation 2 gave me, as well as a good DVD/Blu-ray/media center solution. But after a very disappointing Final Fantasy XIII, Killzone 2 and the introduction of Cinavia, I pretty much abandoned it for years, resorting to my PC instead. Until I picked up Red Dead Redemption last year at our annual Queensday fleamarket. Great game, I loved it, but my Playstation 3 wouldn't stop sounding like a jetfighter, because the internal fan was spinning at maximum speed, heavily disturbing my gaming experience. This is when the challenge began. Obviously, the first thing I attempted was to replace the thermal compound. That didn't help much. It delayed the high speed fan from kicking in for a few minutes, so the end result was still the same.

The second attempt was to replace the internal fan. There are two different fans used in production. The first is a 19-blade fan which can be found in early models, assumably made and produced in Japan. The second is a 15-blade fan which can be found in later models, assumably made in China. My unit had a 15-blade fan originally and since the internet stated that the 19-blade fan is much better, I found one on eBay and gave it a go. Was the internet right? Well, they were right about the fan's cooling performance. It is much better indeed. This is the part where I lost respect for Sony, so this is when the jailbreaking began. I succeeded and I ended up using it a lot from that point on. But the thermal performance got worse again and after heavily enjoying GTA 5 for months, the 19-blade fan kicked into jetfighter mode as well.

As I thought that increasing the airflow seemed to work, I actually made a pretty sweet mod with a Nyko Intercooler for my fourth attempt. Because the phat PS3 is obsolete, so is the Intercooler, but I picked one up for a good price at a popular Dutch online marketplace. On eBay, these things go for ridiculous prices. I spent a good amount of money in buying all new fans for this thing, because this baby has common axial fans, rather than the PS3's radial one. There's actually a design flaw in the Intercooler, because the side fan blows air outwards instead of inwards. This just proves that you shouldn't trust everyting people tell or sell to you, always think rationally. I didn't like the fact that I had to switch it on prior to use and I wanted it to start running whenever I powered the PS3 on, so I tapped off the 12V supply from the PS3's power supply, removed the Intercooler's AC adaptor and hid the connector nicely inside the Intercooler's enclosure. It took me 3 days to build, about ¤ 130,- in materials and it worked like a charm. But what was the end result? Not a god damn thing. Even though I significantly increased the airflow with this thing, the jetfighter mode still kicks in at around the same time to annoy me even further. All that time and money spent on the Intercooler has been a pure waste and it ended up in the trash for recycling.

The big mystery
Why was it so hard to cool this thing properly? It worked excellent and quietly at the time I bought it, but the cooling appeared to get gradually worse over time. A new fan worked for a little while, and adding more fans later on did nothing. Thanks to the jailbreak, I am able to read out the CPU (Cell processor) and GPU (RSX processor) internal temperature sensor and they indicate that it is indeed running way too hot. I even managed to get my hands on a professional infrared thermal camera to see if I could do some temperature readings, but the only thing it could tell me was that the heatsink was around 55 degrees Celcius. This brings me to internet myth number one: The internal temperature sensor is failing. This myth is busted from the start. These sensors are usually diode or transistor based and they don't fail easily. When they do, you'd expect them to be stuck at some ridiculous value, but you could clearly see them starting at around room temperature and increasing gradually. The heatsink or the air moved out of the Playstation doesn't appear to be that hot either. There's only one myth that could explain this: The problem is under the CPU and GPU's heatspreader. If the heat transfer from the processor core to the heatspreader would be faulty, that would explain everything. It would explain why thermal performance got worse over time, why adding extra airflow doesn't work and why the temperature readings are so high. Because they are.

Overly-attached heatspreader
This is where I start to leave my comfort zone and do things I've never attempted before. I've never attempted to take this heatspreader off, with good reason. I never had to. And these things are not designed to be removable. Like most first attempts, it ended in failure. Twice.

The picture above is not mine, I am just showing it as a reference. The first thing you should know is that the CPU and the GPU are not the same underneath the metal. The GPU has passives on the side and four memorychips on each corner. The side facing the CPU is the only side that is free of passive parts. The CPU is glued together and judging by the shape of the glue, this was clearly done with machines. What's also interesting is that there is definetly a different type of glue used between the CPU and the GPU. If you know how to do it, the GPU's heatsink is fairly easy to pop off, but not the same thing can be said about the CPU. That is because the space between the CPU's base and the heatspreader, where the glue resides, is extremely narrow. You will need something very thin to get in there. I've seen this guy on Youtube that slices right through with a nailvile. I couldn't do it. The thinnest tool I could get my hands on was a joint knife. The blade is way too big and even then, it was still too thick. Being frustrated from roughly two hours of trying to open this thing, I made it thinner using the only somewhat suitable tool I could get my hands on, which was a Dremel. It worked, but it also made it extremely sharp. I was finally able to cut through the glue, but I got so enthousiastic of success that I whacked the blade right into the CPU core. It broke. True story. I had pictures of it on my phone, but my touchscreen died during warranty, so I had to ship it for repair and they swiped it.

So long, phatboy
After that happened, I pretty much got a replacement thrown into my face from someone who wanted to get rid of it. It was a slim and this one has clearly been moved a lot judging by the scratches on the exterior, but it worked fine and it was a model that could be jailbroken. The cooler was clearly too noisy for my taste. It was far from running on the highest speed, but it wasn't exactly close to the lowest setting either. Obviously, I wanted to to see if I could get that heatspreader off, again. Because taking the heatspreader off was obviously the most risky part, I focused on that and I went to the hardware store to see if I could get anything better suited than a joint knife. But it was still the most suitable tool in the store. I couldn't find anything that was thinner. I used my joint knife again, There was an elco I kept bumping into with my knife, and eventually I'm pretty sure I lifted it's enclosure. That's fixable, but it is still damage I didn't want. All because that fucking blade was too big. But I did manage to get that heatspreader off again without slamming it into the core this time. But the sharp and by now rusty blade did expose some copper beneath the heatspreader's surface. Exposing copper doesn't necessarily mean you broke it, unless you've shorted it. Those copper traces beneath there are very precise, and it looks like I did shorted it, because this one died too. Exactly the same result. Then I remembered this also happened on my first try with the broken core, but I didn't think it was serious. Apparantly it is. This might actually be fixable if you sand the copper down using a fiberglass pen, but taking the whacked elco into account as well, that Playstation was already damaged so badly that I didn't want to try it anymore.

Finding another one. And finding a tool.
I obviously didn't get a new Playstation thrown into my lap again, so I had to search for one. I looked up online ads and I called sellers before making a bid to see if it was a suitable model. Rejected a lot of models because they weren't. I'm sure that left a number of sellers pretty confused. But I did manage to find one closeby and this one has clearly been treated with respect. The last owner tried to keep it dust free and there's no external damage anywhere. So I bought it. Now I needed a tool, because I was convinced that the joint knife I used is the biggest reason for my earlier failures. When you're searching online for a tool, there's one site that definetly wants to be found for this job. It is the IHSBuster.

When you enter the site, you see a well designed frontpage, but that's about it. There are two poorly shot videos, an order page, a contact form and a lot of empty pages. No address, no phone number, not even a company name. There's also nothing written about it online. To me, that instantly makes alarmbells ring, quite loudly too, and I'm sure I'm not the only one who thinks that way. But they do offer Paypal and Paypal offers you buyer protection. They have pictures, they have two videos so they're clearly trying to say that they deliver what is displayed and if they don't deliver, Paypal should give you your money back. So atleast that gave some kind of insurance. I thought I'd tried it out, because why not. It's not like I've found anything better and the tool seems well suited for the job. At ¤ 50,- including shipping, it's more than I would have wanted to pay for it, but I've paid more in the past for specific specialist tools. Considering that someone actually went through the effort to get a tool manufactured for this job, I'd say it's worth it. But they could have been a lot smarter in their efforts to sell it.

I placed the order on a Sunday and thanks to the Paypal transaction, the identity of the selling party is finally revealed. It is Compufit, some British local consumer electronics repair company. I didn't hear anything after that, so I sent a mail on Wednesday to ask about my order. I got a response on Saturday telling me it was shipped the day before, and I got it in the mail on Tuesday. I do a lot of buying online and I would consider this transaction to be below standards, but frankly, I'm more relieved that I actually got the thing. First impressions are that every promise made on their website is fulfilled. The handle is probably a standard part with a logo glued onto it, but I am assuming the blade is not. I cannot find any evidence to suggest that this is manufactured by hand, which is a good thing, because hand manufacturing will always lead to quality issues on some units. I'm guessing the material is steel. It is very thin, it is slightly flexible, nicely polished and the blade at the end is blunt, but slightly sharp at the same time. You can jab it in your skin and it won't hurt you, but it does latch into it instead of smoothly sliding over. With enough force, it will slice your skin off. This thing looks promising, so time to try it out!

Here's the result. A nice, clean cut. You can tell that my point of entry is at the bottom left corner of the heatspreader. To make a point of entry, as I've already figured out with the joint knife, the trick is not to use blunt force, but to push it slightly and wiggle the handle around from left to right until you cut through. Once you do, the IHSBuster just slices through the glue like butter. So was it a good buy? By now, I can tell you that the IHSBuster is hands down the most perfect tool you could ever think of if you're gonna do this job. They've got every aspect right: The thickness of the blade, the sharpness of the edge, the flexibility of the blade and that angle in the middle guarantees that if you're going to scratch anything, it will be the heatspreader instead of the chip's base. If you're having trouble finding the right tool for this job, look no further. If the price is an obstruction, there's no reason why you couldn't sell it when the job is over to limit the damage for your wallet. But I'm going to keep it. Who knows when this thing might come in useful. In terms of product design, they've done a very good job, with the exception of the handle, because it is plastic. I'll tell you why in a minute.

Now that I have finally got this thing off, I cleaned up all glue and old compound, replaced it with Arctic Silver, put it back together and fired it up with GTA 5. And after half an hour of driving around, the fan was still running at a very low speed and the temperature sensors revealed that the CPU was at a stable 65'C and the GPU at 70'C. When the tv is muted, you could hear the PS3 if you'd focus on it, but during a game or a movie, it is impossible to hear. Challenge completed: This thing is finally quiet.

After a lot of experimentation and failure, I can now finally conclude why the Playstation 3 has such thermal issues: Sony has used a thermal compound under the CPU and GPU heatspreader that suffers from terrible decay over time. This is not a design flaw, but a production flaw, and a nasty one that will not reveal itself until years have passed. I could not find a single design flaw that requires you to modify the Playstation 3 in any way. With phat models, it is true that the 19-blade fan performs better over the 15-blade, but remembering it's itinitial performance, I am convinced that the 15-blade fan is suited enough to cool a phat quietly. The reason why phat models have more issues is because it consumes more power, which means more heat, and the reason for that is because the CPU/GPU are etched on a lower resolution over the slim ones (90nm - 45nm).

When you look at either the phat or the slim's design, the fan control is suitable for low noise performance, the heatsink is properly designed and at low speeds, the air in- and outtake are more than big enough. Every other solution is busted, including the exterior cooling accessories, the PS3 ezChill or these ridiculous (and often hideous) mods that I've seen people make. If the heat from the processor cores isn't properly transferred to the spreader, none if it will work. There is nothing wrong with the Playstation 3's temperature sensors: These sensors are very simple and do not break easily, and if your PS3 is shutting down from overheating, that is because it is, even if it doesn't feel hot at all. There's no point in blaming the sensors. You should be thankful that they prevent irreversible damage.

This is the end result. It looks the same on the exterior, with the exception of the warranty seal ofcourse, but the big difference is that this baby is impossible to hear when you're playing a game without any hard- or software modification whatsoever. Do you want to know how to do it like a professional? Here's how.

First off, here's your material list. Skip nothing, because you'll need it all. You will need:
  • The right screwdrivers, including the security torx
  • An ESD service kit
  • An IHSBuster
  • A hairdryer
  • A syringe of Arctic Silver 5
  • Rubbing alcohol or ArctiClean
  • Cotton cloth or paper towel
Use protection, just like your grandma said
If you want to do the job properly, you do not want to damage your PS3 motherboard while doing so. Which is why you need protection from static discharges you are transferring to your PS3 during repair, commonly known as Electro Static Discharge (ESD). ESD will damage the silicium of the components on your PS3 and you will not be able to tell that this is happening. Your PS3 will work fine once you're done, but it will decrease its life expectancy significantly, so don't expect it to last more than 3 to 5 years if you haven´t used protection. This is the most important reason why I don´t trust any of these self proclaimed repair experts with a job like this, because ESD damage is very real and a true professional would know that. None of these repair howto's I've seen ever mentioned it. I´ve written a blog (in Dutch) about it before and iFixit has a good blog about it as well. If you've ever opened up your PS3 before without using an ESD kit, you're already too late because the damage is irreversible. Find a new one and make sure the warranty seal is intact, because that is your only guarantee that no-one has tampered with it. I guarantee you that Sony's assembly plant has a proper static free environment, like all other professionals in this industry. Once it's enclosed, it's immune, but once it's opened, it's vulnerable. So ground yourself before opening the first screw, do not use any plastic or synthetic material whatsoever and don't remove the wristband until it's completely back together again. Do not use tape, do not wear latex gloves, do not use plastic tools and do not use synthetic cloths like microfiber. You get the idea.

Start with the GPU
Open the PS3 up and extract the motherboard. Consult iFixit for a guide depending on your model. Once you have it out, it is time to figure out how to get the heatsinks off. I recommend starting with the GPU, because the point of entry you should use is the side that is right next to the CPU. If the CPU's heat spreader is still on, you will not damage it. As I wrote earlier, a different type of glue is used between the GPU and CPU. In order to weaken the bond, you should heat it up using a hairdryer. Then you need to wiggle a screwdriver between the heatspreader and the GPU to make it come off. But beware, this should be done with lots of patience. The material used on the base of the GPU is somewhat soft and wiggling around on it with a screwdriver will leave dents in the GPU's base. You do not want that: there are copper traces underneath that could break from these dents. To solve that, use something to cushion the blow from the screwdriver that is not plastic or synthetic. I saw a video where someone used a cardboard strip. I used a small wooden toothpick. Another good suggestion which I thought of afterwards is the wooden stick from an ice cream popsickle. So push the protective material and the screwdriver in that corner, heat the GPU up with a hairdryer and gently wiggle the screwdriver in a rotating direction. To give you an idea, I had to heat up the GPU about five times because it cooled off before I managed to break the bond. That's how patient you need to be and how little force you need to use. Using these instructions, you should have a pretty safe method to get the GPU's heatspreader off.

Moving on to the CPU
The CPU's heatspreader can be removed quite easily, but only with the right tool. Unless you have a workshop to make a decent tool yourself, I highly recommend using the IHSBuster. I could not find any standard tool in retail that's good for this job. Take note of how wide the glue traces are from the pictures. Do not push your tool any deeper towards the center: If you touch the core with a metal tool, you're bound to brick it.

The glue used is a very strong and flexible material. Unlike the GPU's glue, heating it up does not seem to affect it. To cut it, you will need to make a point of entry and slice it open. Once you've made a point of entry, you will cut through it like butter, but the point of entry is the most difficult part. I recommend starting in a corner, because the corners are easily accessible. The trick is not to use blunt force, but to push it slightly and to wiggle the back of your tool from left to right. Once again, use patience. When wiggling your tool from left to right, you should notice that it gradually gets in deeper. Once you can tell that, be cautious not to get overly excited and push the tool in too deep. Stay focused. Once you've made your point of entry, slice off the glue on all sides and it should come off.

Cleaning up afterwards
The old thermal compound can be cleaned off easily with rubbing alcohol or ArctiClean. Use a paper towel or cotton cloth, nothing synthetic. The glue remains will also have to be removed. If you were to push a heatspreader back in its place, the distance between the CPU/GPU and the heatspreader would be greater than before because of the glue remains. That's why it has to go. You cannot brush it off, you will need to scrape it. The IHSBuster is also a great tool for this if you hold it upside down, with the tip facing down. This is also a task that you should do with lots of patience. Particulary the glue on the GPU will take a good 30 minutes of scraping on the memorychips and the heatspreader. The glue on the CPU is much easier to scrape off because of its flexible texture.

New thermal compound
As listed in my bill of materials, I highly recommend the use of Arctic Silver for two reasons. One, Arctic Silver really does perform better than a standard sillicon compound. I've seen several tests that have shown that the use of Arctic Silver makes a couple of degrees of difference. When your goal is to make the Playstation 3 as quiet as you possibly can, you want those extra couple of degrees that Arctic Silver gives you. Especially considering that you need to apply it on both sides on the heatspreader. Those couple of degrees add up on each side. I'm not saying that sillicone compound won't work, but I am saying that Arctic Silver will work better. The second reason is the decay of the compound. Little reliable information is known yet about Arctic Silver's decay, but a lot is known about the decay of sillicone compounds. After a few years of intensive use, it's worn out and needs to be replaced again. Because silver doesn't decay at all, I'm pretty confident that Arctic Silver will perform better over time.

Most guides state that you should use thermal adhesive to glue the heatspreaders back to the board. I tried that on my first attempts that ended up in failure anyway, but after reconsidering, I'd recommend that you do not use adhesive. The Playstation 3's motherboard EMI shield has two springs on the back of the CPU and GPU to push it to the heatsink. These springs will do an excellent job of securing the heatspreaders without using glue. Gluing it back together imposes the risk of extra distance between the CPU/GPU and the heatspreader, exponentially decreasing thermal performance. Plus there is always a risk that you will have to change the compound again after a couple of years. If you do not glue the heatspreader back on, the process of replacing the compound again will be much less painful. I did not glue it back and I have no regrets doing so. So apply Arctic Silver on the CPU/GPU core, place the heatspreaders back, apply Arctic Silver to the heatspreader surfaces and place the top part of the EMI shield without dislocating the heatspreaders. Flip the board, place the rear shield and secure the springs on the back. Re-assemble the Playstation 3 and remove any dust you can find inside and you should be good to go!

Why you should do this yourself
Outsourcing is always a good option if you need to invest a lot of money or do not have the experience to get the job done. But in all honesty, I strongly advice to do this job yourself. There are two reasons why outsourcing this job is a bad idea. The biggest reason is that the people offering these services are pretty much always self proclaimed experts without any real training. The biggest quality concern when performing this repair is the ESD damage. You're doing this repair because you want this machine to last, but ESD damage will decrease the life expectancy significantly. I did not find any guide or repair provider that promises to use protection and I highly doubt they even heard of it. I have good faith that my Playstation 3 will work for many many years to come and I am pretty confident that the repaired units from others will not achieve the same. The second reason is the time it takes to get this job done right. This repair should be done with lots and lots of patience and even for an experienced person such as me, this is easily two to three hours of work. I'm sure you can make a good estimation of what a three hour repair job should cost for a professional. Probably more than the ¤100,- worth of material that you will need to get this job done. If you're good with tools and you follow my instructions, this job is very doable, but it takes time.

Don't bother contacting me if I can do the repair for you: I don't need the money and I don't have the time.

Final words: Why Sony, Nintendo and Microsoft should go fuck themselves
There were times when a newly released console was much faster than a pc and it took about four years before the pc was up to speed, but those days are over. The new Xbox One and PS4 both use the PC architecture but compared to a modern PC, their performance is actually worse. The only thing you get is another closed platform with expensive games and accessories and an online subscription fee to boot. On top of that, I am not convinced that these are quality products. The last generation consoles from Sony and Microsoft have serious design (Xbox360) and production (PS3) flaws that caused hardware failure and I am not convinced that the new generation is any better. A friend of mine already bought a PS4 which lasted for about a month. Now it's been sent to repair two months ago. As a consumer, you should know when you're being fucked in the ass and that's exactly what these companies do. There's no point of supporting a closed platform anymore. Too bad about the exclusive games, but I'm putting my money on the Steam Machine.

About the author
The author is a Dutch engineer with an internationally recognised bachelor's degree in electrical and electronic engineering that likes to play games and fix broken things. I am completely independent and not affiliated with Sony, Microsoft, Compufit/IHSBuster or the PS3 hacking community in any way.

Howto: Ventilator in de voeding vervangen

Door Flake op dinsdag 21 januari 2014 19:51 - Reacties (22)
Categorie: Elektronica, Views: 7.730

Een kleine inleiding: Mijn Delletje uit 2009 heeft nog nooit storing gegeven, voldoet nog steeds en deed z'n werk altijd fluisterstil. Daar kwam laatst verandering in toen ik een Latex-document aan het schrijven was en tijdens het compileren kon je de koeling ineens flink horen blazen. Da's natuurlijk niet goed. Nou kan ik meteen verklappen waardoor dat komt: stof. Mijn PC en randapparatuur zitten uit het zicht weggewerkt in een bureaukast die ik slechts incidenteel schoon maak, maar de laatste keer was ruim 3 jaar geleden. Misschien is incidenteel niet eens het juiste woord.

Deze foto had ik destijds over WhatsApp naar mijn vriendin gestuurd. Leuk dat deze Dell een aparte intake heeft in de wand boven de videokaart, dat zie je niet vaak, maar als die vol zit met stof zal dat niet veel helpen. Dit gold voor de hele pc: alle kieren zaten verstopt met stof en aan de binnenkant was het net zo erg. Compressor en stofzuiger erbij gehaald, alle stof verwijderd en alle heatsinks schoon gespoten. Toen kwam er een ander euvel aan het licht: 1 fan is uit balans geraakt, hij vibreert en maakt geluid. Helaas bleek dit de fan van de voeding te zijn. Of dit door het schoonspuiten komt kan ik niet met zekerheid zeggen. Veel mensen zullen zo'n klacht laten voor wat het is, want hij draait nog wel en er komt lucht uit, maar het geluid hiervan komt bij mij over als een baby zeehond die wordt doodgeknuppeld. Zo ga je niet met elektronica om: dit moet gerepareerd worden.

Een normale opvatting van de gemiddelde IT'er is dat je de fan van een voeding niet kunt vervangen: dat wordt een nieuwe voeding. Mooi niet dus hè, die voeding werkt nog perfect en die fan kun je prima vervangen, alleen is dat niet zo simpel als een stekkertje insteken. Hiervoor moet je solderen. Als je, net zoals ik, enigszins ervaren bent met solderen, dan draai je je hand daar niet voor om, dus in dat opzicht is deze blogpost niet het spannendste wat je kunt bedenken. Ik heb toch besloten om er verslag van te leggen voor de tweaker die ook een kapotte fan in zijn voeding heeft, maar geen idee heeft hoe je dit moet oplossen. Hopelijk heb je er dus iets aan.

De benodigdheden om dit uit te voeren:
  • Een nieuwe fan
  • Schroevendraaiers
  • Strip- en kniptang
  • Een scherp (hobby)mesje
  • Soldeerbout met tin
  • Krimpkous (tip: koop een kitje met verschillende maten)
  • ESD-kitje
Wat het ESD-kitje betreft, ik heb in mijn vorige blogspot genoeg gezegd over antistatisch werken, en dat geldt ook voor deze voeding! Computervoedingen zijn flyback converters en daar zitten mosfets in. Laten mosfets nou net zeer gevoelig zijn voor statische elektriciteit. Omdat deze ook nog eens bijzonder heet worden gaat de degradatie met deze dingen net iets harder. Mocht je zo'n kit niet hebben en niet willen kopen, doe dan je best om geen componenten aan te raken, ook geen heatsinks. Bij een voeding is dat nog wel te doen.

Je zult ook iets nodig hebben om de krimpkous te laten krimpen, dat doe je met hitte. Aanstekers ben ik geen fan van, omdat je de kous vaak midden in de vlam moet houden om een beetje warmte over te kunnen dragen waarbij de temperatuur vaak te hoog wordt en het spul gaat schroeien. Ik gebruik een klein gasbrandertje: die kun je makkelijk vanuit iedere hoek richten en als je afstand houdt en veel beweegt voorkom je dat de temperatuur te hoog wordt. Een verfstripper is ook zeer geschikt, mits je 'm niet te heet zet.

De voeding in kwestie (van Lite-On) met een nieuwe fan. Ik wou 'm stil hebben, net zo stil als voorheen. Dit was de enige stille fan die de retail in mijn directe omgeving kon bieden, van Fractal Design. Nu gaan we de voeding openmaken.

Zo ziet de voeding eruit zodra hij is geopend. Zoals je ziet zit de transformator hier aan de bovenkap. Ik heb eerst de behuizing geopend zodat ik deze transformator kan opvangen tijdens demontage, zodat hij niet op de printplaat knalt. Na het losschroeven leg je hem gewoon aan de kant. De kap is dan verwijderd en dan heb je genoeg ruimte om te werken. Volgende stap is om de ventilator los te schroeven.

De gewraakte ventilator. Quality and performance staat erop, ik merk het ja :/.De draadjes kunnen eraf worden geknipt, maar hou genoeg speling over om aan te kunnen solderen. Inkorten kan later altijd nog. Deze fabrikant had de gehele kabel van krimpkous voorzien. Met een hobbymesje kun je dit wegsnijden door in het begin van de kabel je mes tussen de twee aders te zetten en omlaag te strijken. Probeer wel tussen de twee aders te blijven met het mes, anders snij je in de isolatie van de kabel waarmee je kortsluiting kunt veroorzaken. Mocht dit gebeuren, dan kun je nog een nieuw stukje krimpkous om die isolatie schuiven om dit te repareren.

Na het verwijderen van de fan kun je de nieuwe plaatsen en de kabels op maat knippen. Laat een stukje over aan het uiteinde om te kunnen strippen. Bij het strippen van de kabel uit de voeding, let er op dat je geen kracht uitoefent op de printplaat! De gele kleur verraadt dat dit een pertinax printplaat is. Lekker goedkoop, prima hitte eigenschappen, maar mechanisch bijzonder zwak. Ze kunnen niet tegen trillingen (vandaar die gigantische hoeveelheid lijm die je overal ziet) en als je tijdens het strippen aan de kabel gaat trekken, dan heb je grote kans dat je de koperverbindingen aan de onderzijde kapot trekt. Hou de kabel dus vast met een tang als je tijdens het strippen aan de kabel gaat trekken. Na het strippen kun je het uiteinde twisten en vertinnen. Dan komt het er als volgt uit te zien.

Draadjes zijn ingekort, gestript, vertind, met krimpkous op z'n plek. De gele draad is voor feedback om de rotatie uit te lezen. Aansluitingen op je moederbord ondersteunen dit altijd wel, maar deze voeding doet daar niks mee. Die kun je rustig eraan laten zitten zonder ergens aan te sluiten, dit heeft geen gevolgen. De krimpkous zit per ader en zoals je op de foto ziet zit er nog een extra dikke krimpkous aan de onderzijde. Dit is mijn manier van meeraarderige kabels repareren: Zodra alles vast zit schuif ik er een extra kous omheen. Dan weet je zeker dat die isolatie nooit meer los schiet en dat alles op z'n plek blijft.

De soldeerverbindingen zijn gemaakt, maar ik heb een fout gemaakt. Bij de rode kabel liet ik de krimpkous te dicht bij de verbinding komen, waardoor hij is gekrompen door de hitte van de soldeerbout. Die krijg ik niet meer netjes eraf geschoven over die verbinding waar ik 'm wel hebben. Ik zal vast niet de enige zijn waarbij dit kan gebeuren. Geen probleem: De zwarte kous is in orde, dus die kan gekrompen worden op de verbinding. De rode verbinding solderen we los, de krimpkous vervangen en opnieuw solderen.

Zo hoort dat eruit te zien. Nu kan die grote kous over het hele geheel geschoven worden.

Klaar! Nu kan het kastje dicht :)

Voilà, de voeding zit weer in elkaar en aan de blades kun je zien dat de Fractal Design fan nu is ingebouwd. Volgende stap: testen! Als je een computervoeding op stroom zet gebeurt er niks. Om hem aan te zetten dien je de groene draad uit je ATX-plug kort te sluiten met zwart: dit is wat de computer doet als je de aan-knop indrukt. De voeding vliegt dan aan, alle spanningslijnen worden actief en de fan gaat draaien.

... of toch niet? Want tot mijn verrassing vliegt de fan dus niet aan :(. Hij heeft een klein schokje, maar draaien doet hij niet. Dat schokje geeft wel aan dat er iets gebeurt, als ik de fan een zetje geef met een stokje door het vingerrooster doet hij het wél. Zonder te meten weet ik dan al meteen wat het probleem is: De spanning is te laag. Er mag dan wel een 12V fan in zitten, maar deze voeding blijft stil door de fan op een lagere spanning aan te sturen, en die is te laag voor deze Fractal Design. Dat had ik niet verwacht. Nu ik dat weet gaan we geen nieuwe IT-fan gebruiken, maar een industriële van de lokale elektronicaboer.

Poging nummer twee, dit keer met een Sunon. Met deze fans ben ik al jaren bekend: kwalitatief uitstekend spul, maar ze hebben één groot probleem: ze produceren ontzettend veel herrie. Om die reden had ik deze fan in eerste instantie geweigerd. Nu ik weet dat deze voeding de fan op een lagere spanning aanstuurt kan ik dat rustig doen. Voor de zekerheid had ik de oude fan meegenomen naar de winkel en de startspanningen vergeleken met hun voeding. Deze fan heeft zelfs een lágere startspanning dan de originele, dus dit kan niet mis gaan. Bovenstaande stappen heb ik nu herhaald, met als uitzondering dat ik mijn oude soldeerverbindingen intact laat: ik verwijder alleen de krimpkous om mijn vorige reparatie ongedaan te maken. Opnieuw geïsoleerd met nieuwe kous, testen en voilà, we have lift-off!. Vergeleken met de vorige fan verplaatst deze aanzienlijk meer lucht en omdat hij op een lage spanning wordt aangestuurd blijft hij fluisterstil. Na een stresstestje in Windows gaat de fan inderdaad harder draaien, maar horen doe ik 'm niet.

Dus ik zeg: Job done! Zelfs al heb ik in eerste instantie een verkeerde fan gekocht heeft dit klusje me toch een paar tientjes bespaard op een nieuwe voeding, plus klussen is natuurlijk altijd leuk. Die Fractal Design gaat in mijn stash van onderdelen: Wie weet komt hij ooit nog een keer van pas. Meteen een les geleerd: bij het vervangen van de fan voortaan de karakteristiek van die fan controleren als hij uit een voeding komt. Die fout maak ik niet nog een keer.

Nou is dit klusje niet echt beduidend spannend, maar ik ben bezig met een ander projectje, ook koeling gerelateerd, wat ongetwijfeld een stuk leuker zal zijn dan deze. Te zijner tijd komt daar ook een post over. Stay tuned ;)

Hardware kapot? Waarschijnlijk door ESD!

Door Flake op zaterdag 16 februari 2013 16:43 - Reacties (4)
Categorie: Elektronica, Views: 10.073

Waarom zelfbouw uitvalt en Dell niet
Mijn ouders hadden een klein bedrijf thuis met wat werkplekken, waar ik in mijn jeugd keurig de computers bijhield die ik ook zelf had gebouwd. Bij iedere computer viel wel een component uit: een harddisk, geheugenmodule, videokaart, noem maar op. Uiteraard ruim na de garantieperiode. Op een gegeven moment werd ik het zat en besloot ik voortaan computers in te kopen bij Dell om tijd te besparen. Nu draaien die al ruim vijf jaar zonder dat ik bij één machine ook maar één onderdeel had moeten vervangen. Hoe kan dit? Jarenlang ging ik er vanuit dat Dell gewoon betere kwaliteit componenten kreeg dan consumenten. Totdat ik elektrotechniek ging studeren en leerde over de gevaren van elektronica en electrostatic discharge, afgekort ESD.

Electrostatic watte?
Statische elektriciteit. Dat verschijnsel is iedereen wel bekend: knetterende kleding, een schok bij het vastpakken van een deurklink of, in haar meest extreme vorm, bliksem. Het komt sneller voor bij droge lucht en wrijving, bijvoorbeeld bij lopen over tapijt of simpelweg het dragen van synthetische kleding. In sommige gevallen kunnen wij met onze zintuigen statische elektrische lading waarnemen: Wij kunnen het voelen vanaf 3,5kV en we kunnen het zien vanaf 8kV. Bij elektronische componenten kan ESD-schade al optreden vanaf 100V in het IC zelf. Met andere woorden: het gebeurt zonder dat je het merkt, achteraf zie je er niks van en voorlopig merk je er ook niks van.

Dus met andere woorden, het bestaat niet
Helaas wel. Elektriciteit kunnen wij sowieso niet waarnemen. Een hoogspanningsmast met of zonder spanning ziet er hetzelfde uit en je kan ook niet met het blote oog zien of een geheugenmodule defect is. Alleen omdat je het niet kan zien, wil niet zeggen dat het niet gebeurt.

Dit is een EPROM, een inmiddels gedateerd IC ontwerp, maar door dat raampje kun je de footprint van een IC zien zitten. Als je ziet hoe klein dit is, dan kun je je voorstellen dat daar geen honderden volts aan spanning op mag komen. Bij een modern IC wordt de schade pas zichtbaar op het moment dat je het IC ontdoet van zijn behuizing en met een elektronenmicroscoop de footprint bekijkt. Die spullen heb ik niet thuis liggen, maar een simpele zoekopdracht levert al wat leuke plaatjes op. Neem bijvoorbeeld deze.

Zo ziet lichte ESD schade eruit: een piepklein gaatje op een lithografisch aangelegd stukje silicium, veroorzaakt doordat een te grote spanning tussen die lagen terecht is gekomen. In dit stadium is jouw videokaart nog gewoon functioneel. Dit gat wordt echter groter. Hoe lang dit duurt is afhankelijk van de temperatuur en de stroom door die baan, maar uiteindelijk zal dit gat zo breed worden dat het spoortje zal breken. Vanaf dat moment is je videokaart defect en dat zal je merken. Dit kan nog wel een paar jaar duren, maar vanaf het moment dat jij je videokaart hebt vastgepakt is het al begonnen aan een langzame dood.

Zo! En wanneer gebeurt dit?
Dit kan (en zal) gebeuren als je printplaten vastpakt zonder antistatische werkplek. Zoals ik eerder heb gezegd merk je daar niks van. Je zult vast gezien hebben dat de meeste onderdelen ook geleverd worden in een antistatische zak. Vroeger dacht ik dat dat soort zaken niet meer belangrijk waren op het moment dat het product de fabriek had verlaten, maar dat is niet waar. Het houdt pas op zodra alles in een behuizing zit. Een behuizing maakt een printplaat immuun: een metalen behuizing fungeert als een kooi van Faraday en een kunststof behuizing geleidt niet, waardoor de lading de printplaat niet zal bereiken. Connectoren zijn beschermd: Bij bijvoorbeeld een USB stick zitten snelle ESD-diodes tussen de connector en de USB-controller. Hoge spanningspieken, die ver buiten de toleranties van normaal USB dataverkeer liggen en daardoor schadelijk zijn, worden door de diodes afgevoerd naar ground of VCC, zodat ze niet aankomen bij de USB-controller. Hierdoor kun je zonder problemen een USB-stick vasthouden terwijl je over tapijt loopt. Let wel dat interne connectoren (zoals PCI-e) deze diodes niet hebben.

Geldt dit alleen voor computerapparatuur?
Nee, dit geldt voor alle elektronica. Dus jouw computer, maar ook jouw Arduino, Raspberry Pi of mobiele telefoon als je de behuizing verwijdert. Oude elektronica is hier minder vatbaar voor, omdat deze volgens een lomper lithografisch procedé zijn gefabriceerd. De trend is om op steeds kleinere wafers te produceren, van 10µm in 1973 naar 5nm in 2020, omdat dit leidt tot betere warmtehuishouding. Maar als je kijkt naar bovenstaande plaatjes, dan kun je al vermoeden dat de gevolgen van ESD voor kleinere procedés groter zijn.

Dus jij wil zeggen dat Dell hier wat aan doet?
Klopt. Bij Dell kan ik dat helaas niet bewijzen, maar dat kan ik wel bij HP. Er is een video op internet verschenen van een fabrieksmedewerker die een laptop aan het testen is, maar vergeten is om de harddisk te sweepen. De nieuwe eigenaar van die laptop was zo vriendelijk om deze op Youtube te zetten. Hierop is een hoop te zien.

Zo zie je dat de medewerkers aan de lopende band een snoer om hun pols hebben. Dat is geen elektronisch huisarrest maar een geleidend contact om statische lading af te voeren. Ze hebben antistatische jassen aan, zelfs een petje. Ik zie op de stoelen een geel waarschuwingslabel zitten, dus waarschijnlijk zijn deze geleidend. Dat werkt alleen als de vloer ook geleidend is. Het schroeisel is lastig te zien. Het is niet overal even duidelijk, maar ik durf op basis van deze beelden glashard te roepen dat in deze faciliteit er alles aan wordt gedaan om ESD-schade te voorkomen. Bij Dell zijn ze heus niet achterlijk en geldt dat ongetwijfeld ook.

Dus als ik dit wil voorkomen, dan moet ik een fabriekshal inrichten?
Nee, maar wel een antistatische werkplek. Het menselijk lichaam is geleidend, dus je zult ervoor moeten zorgen dat jouw lichaam in contact komt met aarde. Dit doe je ook bij de componenten, zodat het spanningspotentiaal nul is. Als je dan ook nog voorkomt dat je tijdens het handelen statisch geladen raakt, dan ben je ESD veilig.

Ik bouw graag PC's, dus hoe kan ik dat thuis voor elkaar krijgen?
In mijn zoektocht voor een oplossing voor thuis kwam ik dit kitje tegen. Makkelijk op te bergen of mee te nemen, ideaal voor een student als ik met krappe woonruimte. Voor incidenteel gebruik is dit prima, voor een vaste werkplaats of solderen hebben ze eventueel een betere. Dit is voldoende om jezelf en het apparaat te aarden. Om te voorkomen dat je tijdens het werken statisch geladen raakt kun je een aantal maatregelen treffen. Hierin geldt natuurlijk hoe meer je doet, hoe beter. Een aantal simpele dingen die je kunt doen is een ruimte kiezen waar geen vinyl of tapijt ligt. Draag geen wol, zijde of synthetische kleding. Als je dan ook nog staand werkt of bureaustoelen, tuinstoelen en stoelen met synthetische bekleding mijdt, dan heb je al een behoorlijk nette werkomgeving. Je zou nog verder kunnen gaan door de luchtvochtigheid te regelen (hoger is beter) of een antistatische labjas als je toch synthetische kleding wil dragen, maar zo ver hoef je waarschijnlijk niet te gaan.

Zo ziet mijn antistatische werkplek eruit. De mat is geleidend en middels het zwarte snoer verbonden met randaarde aan die witte stekkerdoos. Ikzelf ben ook geaard met het polsbandje. In deze ruimte ligt kliklaminaat en ik zit op een leren bank. Een prima werkplek, binnen enkele minuten opgebouwd en afgebroken, waar ik met een gerust hart mijn laptopgeheugen kan upgraden zonder de boel te beschadigen :)

Leuk verhaal, maar heb je ook een bronvermelding?
Via Wikipedia of Google is zat te vinden over dit onderwerp. Een aantal punten komen uit het ESD control handbook van 3M. Voor meer informatie over ESD diodes heeft TI een prima catalogus.